
Algorithms and
Programming

LEVELS 7-8

Design algorithms represented diagrammatically and
in English, and trace algorithms to predict output for
a given input and to identify errors (ACTDIP029)

Implement and modify programs with user interfaces
involving branching, iteration and functions in a
general-purpose programming language (ACTDIP030)

Software Engineer
Applies knowledge and skills in software to solve
problems by architecting, creating and maintaining
applications and systems.

Software Engineer/Software Developer
A person who applies knowledge and skills in software to both
architect and design a system to meet client requirements, and
also builds the application through writing code.

Developer/Programmer
Creates software and applications by writing code. Can also
involve gathering requirements , designing user interfaces,
writing documentation and other processes.

Career Pathways

Career Pathways

Video Source: Dr Tim Kitchen, filmed at the BiG Day In

Career Pathways

Definitions

Algorithm A sequence or set of rules written as part of the code upon which software or processes are built

Branching An instruction used in coding to perform different actions when a decision is made

Computational Thinking Applying a four-step problem-solving cycle to develop and test solutions

Data Set A collection of data, often displayed in a table

Data structures A structured collection of data, often in table format (column = variable, row = a record of that variable)

Digital solutions Creating a soluton to a problem using a digital method like an app or computer program

Flowchart Method used to visually show the commands in your code using symbols to represent different functions in the
program

General-purpose Programming Language A programming language that can be used for writing software in a wide variety of application domains

Iteration An instruction used in coding to repeat a command

Loop Code that runs a set of commands either a certain number of times or until a condition is met

Pseudocode Commands that are written in plain language (eg English) and used to plan out code and describe each step

Test data To ensure the code produces the correct output

User interface The digital screen through which a user inputs information such as text or clicking buttons

Computational Thinking

Computational thinking is a process in which you apply a four-step problem-solving cycle to ideas and challenges to develop
and test solutions.

Source: Digital Technologies Hub, https://www.digitaltechnologieshub.edu.au/

https://www.digitaltechnologieshub.edu.au/

Algorithms

An algorithm is a sequence of explicit, step by step
instructions to complete a task. Algorithms enable digital
systems to complete required tasks. The complexity of
algorithms increases as the task becomes more complicated.
Certain functions can be used to reduce the amount of
content written to perform the algorithm.

Written algorithms can be manipulated and added to a
digital software program to create a digital solution. These
algorithms need to be written in a language the digital
system will understand. General purpose programs that have
the ability of the create an array of different problems to
solve. Common general-purpose programming languages
include C++, Python and JavaScript, but there are hundreds
of programming languages.

Video Source: Intro to Algorithms, CrashCourse

6/8/20

Common Algorithms

Search - step-by-step procedure deployed
to locate specific data within a dataset

Selection Sort – sort a list or random
number dataset (array) from smallest to
largest

selectionSort(array, size)
 repeat (size - 1) times
 set the first unsorted element as the minimum
 for each of the unsorted elements
 if element < currentMinimum
 set element as new minimum
 swap minimum with first unsorted position
end selectionSort

Flowchart Pseudocode

ALGORITHMS – Branching

Branching is the term given to show multiple
options available for the task to be completed.
The direction of the algorithm will change,
depending on how the task is executed. E.g. The
question ‘Is it raining outside?’ requires two
options - an answer of yes or no. The answer to
the question will influence the next command, to
bring an umbrella or not.

Is it raining outside?

Yes No

Leave your
umbrella at

home

Bring and open
your umbrella so
you don't get wet

ALGORITHMS – Iteration

Some instructions will be repeated, just like the
instructions of making your breakfast every morning.
Instead of repeating the same algorithm over and over –
one algorithm can be written to repeat the same task.
This is formally called an iteration – more commonly
known as looping.

Instead of writing out the instructions to make breakfast
everyday (365 times) you write down the instructions
once, and keep using those same instructions.

Video Source: Code.org, Hour of Code, Chris Bosh teaches Repeat Until statements

ALGORITHMS – Conventional Statements

There are different ways to write code. What you use will depend on the type of program
you want to create and the purpose of that program. When coding always ask yourself –
are there commands I can use to reduce my code? A While loop is a good example of
efficient coding:

While loop Repeat a section of code an unknown number of times until a
 specific condition is met. A while loop will run forever until the
 condition is met

Condition – Is it raining?

No (condition false) Go to the shops (avoid the statements inside the while loop)
Yes (condition true) It is raining so I will stay inside and keep checking to
 see when the rain has stopped.

 When it has stopped, I’ll go to the shops

PLANNING TO CODE

Planning out your code is an essential step to programming.

If we go straight to the code, we may miss steps, forget code or
add the wrong code. If one thing is missing from our code, it
means our program may not function at all or may not perform
the task we wanted. Trying to find the mistakes can be a hard
task, especially if we don’t know what the actual error is
because we never planned out the code.

If we do not plan before we code, we end up focusing only on
the coding, not the logic steps we need to make our program
complete the task. A flowchart helps plan out the code needed
to create a program. Each shape has a different meaning, and
arrows are used to shows the next step in the sequence
depending on the input.

Flowcharts & Diagrams

We have different symbols that are used in the English language to mean different things. A full stop shows at the end of
sentence. A ‘?’ is used to ask a question. Symbols are also used to show/represent different functions in a flowchart.

Shows the movement and
direction of the flow chart

Process Shows the instructions

Flow/arrow

Start/End
Begins and ends the functions
and instructions

Decision Branches out to show the
different options

Data Video Source: CSER, An overview of flowcharts

Flowcharts & Diagrams

Flowcharts use visual cues to show the steps and commands your program
will run. Flowcharts are important to order your commands. You can go
back, follow the commands and make sure it flows. Flowcharts will help you
track your progress when programming and before you code – they help you
understand all the different functions that will be needed to create your
program. We can use the flowchart and pseudo code to remove any
sequencing errors that may occur, saving time and frustration when writing
the code.

Pseudocode is another way to plan before you code. Pseudocode is a
language-based description of the steps in an algorithm or system. It mostly
uses structural conventions of a normal programming language; however, it
is intended for human reading. It doesn’t include programming language-
specific code. It is a description of what happens in each step and includes
important information needed for the algorithm or program to succeed.

An algorithm flowchart, pseudocode and code

General Purpose Programming Languages

After you have General purpose programs that have the ability of the create an array of different problems to solve. Common
general-purpose programming languages include C++, Python and JavaScript.

Video Source: Simplilearn YouTube Channel

User Interface

User interface refers to how the user will interact with the
hardware and software. Interacting with the software may
include creating software with a Graphical User Interface
(GUI) which often includes creating buttons to add text,
menu buttons with multiple options and pages that when
clicked will access more pages. Any part of the program
that the user interacts with is part of the user interface.

Command Line Interface is a common interface when
programming. This is when the user will type in the
command. The command is displayed in the form of text (in
the programming language not structured English). The
digital device will respond to the commands. Video Source: CrashCourse, Keyboards & Command Line Interfaces

Develop a Digital Game

Making a digital game is fun and creative. It also uses many basics of coding.

Online tutorials can help us create digital games. Once we learn some basics, we can make our
own games. Microsoft MakeCode is an online app that teaches you how to make games and
computer programs.

Go to https://arcade.makecode.com/ and choose a game tutorial to complete. Try using the
Blocks Tutorial first, then create another game using JavaScript or Python.

https://arcade.makecode.com/

Technical Advisor

David Beitey is an IT Industry Professional with a Bachelor of Information
Technology (Honours). David is currently the Online Technologies Manager at
the eResearch Centre at James Cook University. His experience lies in full stack
web and application development, user experience, systems administration
and integration, project management and business analysis.

David is an organiser of the DevNQ (Developers North Queensland) community
and active open source software developer. He regularly mentors students,
researchers and colleagues, and has previously been involved in the CSIRO
STEM Professionals in Schools, a national volunteer program that partners
schools and industry to bring STEM (Science, Technology, Engineering and
Maths) experiences into the classroom.

David’s expertise and oversight has guided the publication of the resource and
the ACS thanks David for his partnership in the ICT Gateway to Industry Schools
program.

About ACS

ACS is the professional association for Australia's
technology sector. More than 48,000 ACS members work
in business, education, government and the community.
ACS exists to create the environment and provide the
opportunities for members and partners to succeed.

ACS strives for technology professionals to be recognised
as drivers of innovation in our society, relevant across all
sectors, and to promote the formulation of effective
policies on technology and related matters. Visit
www.acs.org.au for more information.

About the ICT GISP

The Information and Communications Technology Gateway to
Industry Schools program encourages partnerships between
industry, government, schools and their communities to build
Queensland's future information technology workforce. The
program provides an important opportunity to address the
significant shortfall of young, emerging ICT talent in
Queensland. Access more information and ICT teaching
resources below:

ICT GISP Website - https://qldictgisp.acs.org.au/home.html

ICT Educators Community of Practice - https://www.acs.org.au/ict-educators.html

The Big Day In ICT Careers - https://www.thebigdayin.com.au/

ICT Careers Wheel - https://qldictgisp.acs.org.au/career-pathways.html

Acknowledgements

The Department of Employment, Small Business and Training funds this Gateway to Industry Schools Program initiative

https://www.acs.org.au/
https://qldictgisp.acs.org.au/home.html
https://www.acs.org.au/ict-educators.html
https://www.thebigdayin.com.au/
https://qldictgisp.acs.org.au/career-pathways.html

The ACS ICT Educators resources are licensed under a Creative Commons Attribution 4.0 International

License.

Schools and educators can join the ICT Educators’ Community of Practice and can, without charge:

● Use — Use for own purposes.

● Share — Copy and redistribute the material in any medium or format.

● Adapt — Remix, transform, and build upon the material for any purpose, even commercially.

When sharing, or adapting, you must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that suggests the

licensor endorses you or your use.

All users are invited and welcome to collaborate with ACS and other users to create and maintain the

resources, and participation will be acknowledged.

More information about creative commons can via the creative commons website:
https://creativecommons.org/

Acknowledgements

https://creativecommons.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Acknowledgements

