WHOLE NUMBER REPRESENTATION

Information

Binary code uses two numbers, 0 and 1's, to represent data. Binary refers to a two-based number system. Any data stored or manipulated (text, images, sound or videos) in a digital system will be a sequence of 0 and 1's. The single value of the 0 or 1 is known as a bit. The word 'bit' is a combination of the word binary and digit. One of the most common ways to represent the other characters (i.e G, \& , r, \#, L etc) as a sequence of binary numbers is to use the American Standard Code for Information Interchange (ASCII) which uses 8 bits to represent 256 unique characters. When pressing the ' a ' key on a keyboard, the digital system does not recognise or store it as an ' a '. In ASCII the binary code for the sequence of 0 and 1's that represent the a is: 01100001 . The letter a is made up of 8 bits. A capital \mathbf{G} is 01000111 but a lowercase \mathbf{g} is not the same but represented as 01100111.

Curriculum Expectation

Students will identify binary code as the language digital systems use to create, store manipulate data.

Video Resource

Click on the image to open the video
This video details how the binary code functions, comparing it to the 10-base numerical system.

Video Source: Computer Science Education Research
Group (CSER)

BINARY CODE

Digital systems use two numbers: 0s and 1s

The combination of 0 and 1's make up computer data.

Computers will
recognise the 'a' key as 01100001.

Identify binary code as the representation of data used by a digital system.

HUMAN VS COMPUTER

